
Iterated hash functions
V3d

HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Iterated hash functions (Merkle’s meta method)

Components:

✦ Fixed initializing
value .

✦ Efficiently-
computable
compression function

.

IV ⟶ {0,1}n

f : {0,1}n+r ≤ {0,1}n

139

To compute where has bitlength do:

1. Break up into -bit blocks, ,
padding the last block with 0 bits as necessary.

2. Define , the length-block, to hold the
right-justified binary representation of .

3. Define .

4. Compute for .
(The are called chaining variables.)

5. Define .

H(x) x b < 2r

x r x = x1, x2, …, xt

xt+1
b

H0 = IV
Hi = f(Hi→1, xi) i = 1,2,…, t + 1

H∈ is
H(x) = Ht+1

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)f

xt

Ht

……

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Collision resistance of iterated hash functions

Theorem (Merkle): If the compression function is collision resistant, then
the iterated hash function is also collision resistant.

f
H

140

Merkle’s theorem reduces the problem of designing collision-resistant hash
functions to that of designing collision-resistant compression functions.

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)

xt

f
Ht

……..
Ht→1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Provable security

A major theme in cryptographic research
is to formulate precise security definitions
and assumptions, and then prove that a
cryptographic protocol is secure.

A proof of security is certainly desirable
since it rules out the possibility of attacks
being discovered in the future.

However, it isn’t always easy to assess the
practical security assurances (if any) that
a security proof provides.

Optional reading: anotherlook.ca

141

✦ The assumptions might be
unrealistic, or false, or circular.

✦ The security proof might be
fallacious.

✦ The security model might not
account for certain kinds of realistic
attacks.

✦ The security proof might be
asymptotic.

✦ The security proof might have a
large tightness gap.

http://anotherlook.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof of Merkle’s Theorem (is CR is CR)f ′H

✦ Suppose that is not CR. We’ll show that is not CR.

✦ Since is not CR, we can efficiently find messages , with
 and .

✦ Let .

✦ Let .

H f

H x, x∈ ⟶ {0,1}*
x ≠ x∈ H(x) = H(x∈)

x = x1, x2, …, xt, b = bitlength(x), xt+1 = length block

x∈ = x∈ 1, x∈ 2, …, x∈ t∈
, b∈ = bitlength(x∈), x∈ t∈ +1 = length block

142

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)

xt

f
Ht

……..
Ht→1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof of Merkle’s Theorem (2)
✦ We efficiently compute:

143

✦ Since we have .H(x) = H(x∈), Ht+1 = H∈ t∈ +1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Proof of Merkle’s Theorem (3)
✦ Case 1: Now, if then . Thus, is a

collision for that we have efficiently found.

✦ Case 2: Suppose next that . Then and

✦ Let be the largest index, for which
Such an must exist since .

✦ Then so is a
collision for that we have efficiently found.

✦ Thus, is not collision resistant.

b ≠ b∈ , xt+1 ≠ x∈ t∈ +1 (Ht, xt+1), (H∈ t∈
, x∈ t∈ +1)

f

b = b∈ t = t∈ xt+1 = x∈ t+1

i 0 − i − t, (Hi, xi+1) ≠ (H∈ i, x∈ i+1) .
i x ≠ x∈

Hi+1 = f(Hi, xi+1) = f(H∈ i, x∈ i+1) = H∈ i+1, (Hi, xi+1), (H∈ i, x∈ i+1)
f

f □

144

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

MDx-family of hash functions

✦ MDx is a family of iterated hash functions.

✦ MD4 was proposed by Ron Rivest in 1990.

✦ MD4 has 128-bit outputs.

✦ Professor Xiaoyun Wang et al. (2004)
 found collisions for MD4

✦ Leurent (2008) discovered an algorithm for finding
MD4 preimages in operations.2102

145

by hand.

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

MD5 hash function

✦ MD5 is a strengthened version of MD4.

✦ Designed by Ron Rivest in 1991.

✦ MD5 has 128-bit outputs.

✦ Wang and Yu (2004) found MD5 collisions in operations.

✦ MD5 collisions can now be found in operations, which takes a few
seconds on a laptop computer.

✦ Sasaki & Aoki (2009) discovered a method for finding MD5 preimages in
 steps.

239

224

2123.4

146

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

MD5 hash function (2)

Summary: MD5 should not be used if collision resistance is required, but is
probably okay as a preimage-resistant hash function.

147

✦ MD5 is still used today.

✦ 2006: MD5 was implemented more than 850 times in Microsoft Windows
source code.

✦ 2014: Microsoft issues a patch that restricts the use of MD5 in certificates
in Windows: tinyurl.com/MicrosoftMD5.

http://tinyurl.com/MicrosoftMD5

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Flame malware

✦ Discovered in 2012, Flame malware was a highly
sophisticated espionage tool.

✦ Targeted computers in Iran and the Middle East.

✦ Contains a forged Microsoft certificate for Windows
code signing.

✦ Forged certificate used a new “zero-day MD5
chosen-prefix” collision attack.

✦ Microsoft no longer allows the use of MD5 for code
signing.

148

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-1

✦ Secure Hash Algorithm (SHA) was designed by NSA and published by NIST in 1993
(FIPS 180).

✦ 160-bit iterated hash function, based on MD4.

✦ Slightly modified to SHA-1 (FIPS 180-1) in 1994 in order to fix an
undisclosed security weakness.

✦ Wang et al. (2005) found collisions for SHA in operations.
✦ Wang et al. (2005) discovered a collision-finding algorithm for

SHA-1 that takes operations.

✦ The first SHA-1 collision was found on February 23, 2017.
✦ No preimage or 2nd preimage attacks that are faster than the generic attacks are

known for SHA-1.

239

263

149

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-2 family

✦ In 2001, NSA proposed variable output-length versions of SHA-1.

✦ Output lengths are 224 bits (SHA-224 and SHA-512/224), 256 bit
(SHA-256 and SHA-512/256), 384 bits (SHA-384), and 512 bits
(SHA-512).

✦ 2024: No weaknesses in any of these hash functions have been found.

✦ Note: The security levels of these hash functions against VW collision
finding attacks are the same as the security levels of Triple-DES,
AES-128, AES-192, and AES-256 against exhaustive key search attacks.

✦ The SHA-2 hash functions are standardized in FIPS 180-2.

150

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Summary: Collision resistance of iterated hash functions

151

Hash function n

Security level
against generic

attack VW attack
(in bits)

Security level after
Prof. Wang’s attacks

(in bits)

MD4 (1990) 128 64 4 (2004)

MD5 (1991) 128 64 39 (2005) —> 24

SHA (1993) 160 80 39 (2005)

SHA-1 (1994) 160 80 63 (2005)

SHA-224 224 112 112

SHA-256 256 128 128

SHA-384 384 192 192

SHA-512 512 256 256

H : {0,1}* ∙ {0,1}n

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-3 family

✦ The SHA-2 design is similar to SHA-1, and thus there were lingering
concerns that the SHA-1 weaknesses could eventually extend to SHA-2.

✦ SHA-3: NIST hash function competition.

✦ 2008: 64 candidates submitted from around the world.

✦ 2012: Keecak was selected as the winner.

✦ Keecak uses the “sponge construction” and not the Merkle iterated hash
design.

✦ SHA-3 is being used in practice, but is not (yet) as widely deployed as
SHA-2.

152

SHA-256
V3e

HASH FUNCTIONS

CRYPTO 101: Building Blocks
©Alfred Menezes

cryptography101.ca

http://cryptography101.ca

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Description of SHA-256

✦ Iterated hash function (Merkle’s meta method).
✦ ,
✦ Compression function is .
✦ Input: bit string of arbitrary bitlength .
✦ Output: 256-bit hash value of .

n = 256 r = 512.
f : {0,1}256+512 ∙ {0,1}256

x b ≥ 0
H(x) x

154

IV f

x1

H1
f

x2

H2
f

x3

H3
f

xt+1

H(x)f

xt

Ht
……..

Ht→1

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 notation

+ addition modulo

 bitwise complement

 shift right by positions

 rotate right by positions

 bitwise AND of ,

 bitwise exclusive-OR

232

A

A ≈ s A s

A × s A s

AB A B

A ← B

155

f(A, B, C) AB ← AC

g(A, B, C) AB ← AC ← BC

r1(A) (A × 2) ← (A × 13) ← (A × 22)
r2(A) (A × 6) ← (A × 11) ← (A × 25)
r3(A) (A × 7) ← (A × 18) ← (A ≈ 3)
r4(A) (A × 17) ← (A × 19) ← (A ≈ 10)

 are 32-bit wordsA, B, C, D, E, F, G, H

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 constants

✦ 32-bit initial chaining values (IVs): These words were obtained by taking
the first 32 bits of the fractional parts of the square roots of the first 8
prime numbers.
 0x6a09e667 0xbb67ae85 0x3c6ef372 0xa54ff53a
 0x510e527f 0x6905688c 0x1f83d9ab 0x5be0cd19

✦ Per-round integer additive constants: These words were obtained by
taking the first 32 bits of the fractional parts of the cube roots of the first 64
prime numbers.
 0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5
 …………………………………… ………………………………… 0xbef9a3f7 0xc67178f2

h1 = h2 = h3 = h4 =
h5 = h6 = h7 = h8 =

y0 = y1 = y2 = y3 =
y62 = y63 =

156

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 preprocessing

1. Pad with 1, followed by as few 0’s as possible so that the bitlength is
64 less than a multiple of 512.

2. Append the 64-bit binary representation of .

3. The formatted input is , where each is a 32-bit word.

4. Initialize the words of the chaining variable:

x

b mod 264

x0, x1, …, x16m→1 xi

(H1, H2, …, H7, H8) ⇒ (h1, h2, …, h7, h8) .

157

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

SHA-256 processing
For each from 0 to do the following:

✦ Copy the th block of sixteen 32-bit words into temporary storage:
, .

✦ Expand the 16-word block into a 64-word block:
For from 16 to 63 do:

✦ Initialize working variables: .

✦ For from 0 to 63 do:

✦ .

✦

✦ Update chaining variable: .

Output: SHA-256() = .

i m → 1
i

Xj ⇒ x16i+j 0 − j − 15

j Xj ⇒ r4(Xj→2) + Xj→7 + r3(Xj→15) + Xj→16 .

(A, B, …, G, H) ⇒ (H1, H2, …, H7, H8)
j

T1 ⇒ H + r2(E) + f(E, F, G) + yj + Xj T2 ⇒ r1(A) + g(A, B, C)
H ⇒ G, G ⇒ F, F ⇒ E, E ⇒ D + T1, D ⇒ C, C ⇒ B, B ⇒ A, A ⇒ T1 + T2 .

(H1, H2, …, H7, H8) ⇒ (H1 + A, H2 + B, …, H7 + G, H8 + H)
x H1≫H2≫H3≫H4≫H5≫H6≫H7≫H8

158

3. Hash functions Crypto 101:
Building Blocks © Alfred Menezes

Performance

159

Algorithm block length
(bits)

key length
(bits)

digest length
(bits)

speed
(Mbytes/sec)

ChaCha20 — 256 — 323

Triple-DES 64 168 — 21

AES-128 128 128 — 170

AES-128-NI 128 128 — 2426

AES-256 128 256 — 129

AES-256-NI 128 256 — 1830

MD5 512 — 128 517
SHA-1 512 — 160 331

SHA-256 512 — 256 212
332SHA-512 1024 — 512 332

Speed benchmarks from
2018 on an Intel Xeon CPU
(E3-1220 V2) at 3.10 GHz in
64-bit mode.

Relative speeds will likely be very
different on other processors.

Source: www.bearssl.org/speed.html

†

†

http://www.bearssl.org/speed.html

